

Small Type Power Amplifier Series with Multi-Function for Electro-Hydraulic Proportional Valve Drive

Small Type Multi-Function Power Amplifier

Features

This compact, multi-function power amplifier uses advanced hybrid integrated circuits (HIC).

Compact design — Less than half the size of previous models.

High reliability - Circuit board configuration eliminates the need for wiring.

- **Multi-Function** • Simultaneous driving of two valves
 - Controller with built-in amplifier (EDC-PC6-AWZ-D2-20)
 - Dither frequency selection function (From Designs 11, 20)

Specifications

Model No.	EDA-PD1-NWZ-D2-11	EDC-PC6-AWZ-D2-20	
Function	Amp Type	Amp/Controller Type	
Input type	1 DC inputs	Contacts, 6 inputs, DC 2 inputs	
Maximum Output Current	900mA (20 Ω solenoid)	900mA (20Ω solenoid)	
Input voltage	-10 to +10VDC	0 to +10VDC	
Input Impedance	50kΩ	50kΩ	
Externally Set Variable Resistance	10kΩ	10kΩ	
Drive Solenoid	SOL a, SOL b	SOL 1, SOL 2	
Zero Adjust (NULL)	0 to 900mA	0 to 900mA	
Gain Adjust (GAIN)	0 to 900mA	0 to 900mA 2.5V	
External power supply	+5VDC(5mA) -5VDC(5mA)	+5VDC(10mA)	
Time Lag (LAG)	0 to 2sec	0 to 2sec	
Dither Frequency (DITHER)	80 to 250Hz	80 to 250Hz	
Power Supply Voltage	DC24V (DC24 to 30V)	DC24V (DC24 to 30V)	
Power Consumption	30VA	60VA	
Allowable Ambient Temperature	32 to 122° F	32 to 122° F	
Temperature Drift	0.2mA/°F max.	0.2mA/°F max.	
Weight lbs	.6 lbs	.8 lbs	
Driven Valve	Pressure, flow, direction control valves	Pressure, flow, direction control valves	

- Handling
- 1 When selecting a location, avoid areas subject to high temperatures and high humidity, and select an area where there is little vibration and dust.
- 2 Use shielded wire for the analog signal and valve output signal wires. See page G-33 for general precautions.
- 3 The brightness of the LED changes in accordance with the size of the output current.

Power Amplifier Operation and Terminology

(1) Amp Type

(2) Amp/Controller Type

Power Amplifier Operation and Terminology

EDA-PD1-NWZ-D2-11

No.	Name	No.	Name
1	Input signal terminal IN1	7	- DC24V
2	Input signal terminal COM	8	+ DC24V
3		9	Output terminal to valve
4	External power supply P5	10	SOL b
5	Input signal terminal COM	11	Output terminal to valve
6	External power supply N5	12	SOL a

Block Diagram

- Current is supplied to SOL a when input signal voltage polarity is positive, and to SOL b when negative. Either SOL a or SOL b can be driven at any one time.
- Push-pull drive is also supported.
- To measure *current*, measure the voltage at SOL a terminal 11 and SOL b terminal 9, using terminal 5 as reference. The voltage across the 0.5Ω *current* detection resistor at 1A is 0.5V. Use a measurement device with an input impedance of at least $1M\Omega$.
- To use SOL a only, connect terminal 1 of the knob to amp terminal 2, use an input voltage range of 0 to 5V. (ER, ES only)

Application Examples

Adjusting Push-pull Drive for a Special Proportional Valve (Special Specification Direction Control Valve)

a)Overlap Type Proportional Valve

ESD-G01-C5 10-6333D:300mA (Center *Current*)

b)Zero-Lap Type Proportional Valve

ESD-G01-C5 10/20-6586C:200mA (Center *Current*)

As shown in the figure to the left, push-pull control aims at increasing response at the zero point by simultaneously energizing both solenoids.

Adjustment Procedure

- NULL, GAIN, OFFSET
 Rotate all seven knobs counterclockwise as far as they will go.
- 2 Without any connection between terminals 1 and 2, use the OFFSET knob to simultaneously energize SOL a and SOL b as follows.

SOL a 300mA(200mA) SOL b 300mA(200mA)

3 Next, apply +5V to terminal 1 (connecting 1 and 4), and set the SOL a GAIN knob to

the following: SOL a 850mA

SOL b 300mA

For the SOL b *current* here, SOL b GAIN should be fully rotated counterclockwise, 4 and its setting should not be changed.

Apply –5V to terminal 1 (connecting 1 and 6), and set the SOL b GAIN knob for the following:

SOL a 0mA SOL b 850mA This completes the setting procedure.

• The three LAG and NULL knobs should be left rotated fully counterclockwise.
There is no need to change their settings.

• EDA-PD1-NWZ-D2-11 is configured with a feedback system, so it does not have a feedback gain adjustment function. In this case, use EDA-PD1-NWZ-D2-11 in combination with the EA-PD4-D10-*-10 NACHI servo amp.

EDC-PC6-AWZ-D2-20 No. Name No. Name CH1 select terminal COM 1 Input signal terminal 8 External power supply P5 2 CH2 select terminal 9 DC24V 3 CH3 select terminal 10 CH4 select terminal 11 Output terminal to 4 Input signal terminal 12 valve SOL 2 CH5 select terminal 5 13 Output terminal to 6 CH6 select terminal 14 valve SOL 1 Block Diagram LEVEL D 17 TIMÈ TOFF NULL

- GAIN

 TOFF

 A/5

 A/5

 TOFF

 A/5

 A/5

 TOFF

 A/5

 A/5

 TOFF

 NULL

 A/5

 NULL

 A/5

 TOFF

 NULL

 A/5

 NULL

 A/5

 TOFF

 NULL

 A/5

 TOFF

 NULL

 A/5

 NULL

 A/5

 A/5

 TOFF

 SET

 OFFSET

 OFFSET

 A/5

 OFFSET

 OFFSET

 A/5

 OFFSET

 OFFSET

 OFFSET

 A/5

 OFFSET

 OFFSET

 OFFSET

 A/5

 OFFSET

 OFFSET

 OFFSET

 A/5

 OFFSET

 OF
- Dual simultaneous output to SOL 1 and SOL 2 is supported.
- To measure *current*, measure the voltage at SOL a terminal 13 and SOL b terminal 1, using terminal 7 as reference. The voltage across the 0.5Ω current detection resistor at 1A is 0.5V. Use a measurement device with an input impedance of at least $1M\Omega$.

Application Examples

- 1) Switch Position
 - CONT
 - 3+3

- 2) Switch Position
 - CONT
 - 6+6
- 3) Switch Position
 - AMP
 - 3+3

• Simultaneous control using two flow control valves (3-speed)
As shown in the diagram to the left, flow control 1 speed is controlled with CH1

control 1 speed is controlled with CH1 LEVEL when CH1 and CH2 are turned on at the same time.

Next, flow control valve 2 speed is controlled by CH4 LEVEL, and simultaneous control is possible by adjusting flow control valve 1 speed in the same way. 3-speed synchronous control is possible by grouping CH1 through CH3 and CH4 thorough CH6.

• Pressure control valve 6-pressure control

As shown in the diagram to the left, this amplifier can be use as a 6-channel controller for a single pressure control valve. Minimum pressure at this time is in accordance with the setting of the OFFSET knob. The NULL knob cannot be used to configure settings unless a channel is selected.

• 2-output amplifier for simultaneous control of load-sensitive system pressure and flow rate

As shown in the diagram to the left, 0 to +5V input and channel CH2 or CH3 input are added together and output to the flow control valve.

Likewise, 0 to +5V and CH5 or CH6 input is added together and output to the pressure control valve.